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Abstract

Hamilton’s Principle is used to derive, from a covariant Lagrangian, relativistic equations
describing space-time geometry and kinematics of a uniformly-moving ponderable object. The
time transformation is a universal position-independent time dilation relation without any ‘rela-
tivity of simultaneity’ effect. An appendix shows how spurious ‘length contraction’ and ‘relativ-
ity of simultaneity’ effects arise from misuse of the Lorentz transformation. Consistency with the
path-amplitude formulation of quantum mechanics requires the specific covariant Lagrangian
recently proposed by Zakharov, Zinchuk and Pervushin.

PACS 03.30.+p

The formulae giving the relativistic energy and momentum of a uniformly moving

object were derived first, by Planck, in 1906 [1], on the basis of Hamilton’s Principle and
the Lagrange Equations, from a non-covariant relativistic Lagrangian. Planck’s deriva-

tion is recalled, and its relation to Einstein’s famous formula ‘E = mc2’ discussed, in

Appendix A below. Recently a similar calculation was performed by Zakharov, Zinchuk
and Pervushin (ZZP) [2]. In this case, not only are relativistic energy and momentum and

world-line equations derived, but also, from the Lagrange Equation, corresponding to the
temporal component of the space-time four vector, a position-independent time dilation

(TD) relation. This TD relation demonstrates that the ‘relativity of simultaneity’ (RS)
and ‘length contraction’ (LC) effects of conventional special relativity theory are spurious.

How they arise from insufficient attention being paid to important additive constants in
the Lorentz Transformation (LT) describing a synchronised clock at an arbitary spatial

position is explained in Appendix B below.
The present paper repeats the calculations of ZZP, giving particular attention to the

operational meaning of the derived equations, in particular, that of the constants of
integration that occur in the derivations of the worldline and TD relations. The covariant

action of a freely moving physical object of Newtonian mass m may be written asa:

Scov ≡
∫

dτLcov ≡ −m

2

∫

dτ(V 2 − c2) (1)

aThe Lagrangian Lcov in (1) differs from that given by Goldstein [3] by an additive constant mc2/2. Also Goldstein
employs a space-like metric for 4-vector products in place of the time-like metric assumed in Eq. (1).
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where τ is the proper time of the object and its four-vector velocity, V , is defined as

V = (V0; ~V ) ≡ dX

dτ
= (c

dt

dτ
;
d ~X

dτ
) = (cγv;~vγv) (2)

where

X = (X0; ~X) ≡ (ct; X1, X2, X3) ≡ (ct; x, y, z),

γv ≡ 1
√

1 − β2
v

, βv ≡ |~βv|, ~βv ≡ ~v

c

and c is the speed of light in free space. The arbitary constant that may be added to the

Lagrangian, without affecting the Lagrange Equations, is chosen in (1) so that, in the
non-relativistic (NR) limit where c tends to infinity, L = T → TNR = mv2/2.

In virtue of the identity γ2

v − γ2

vβ
2

v ≡ 1, which implies that V 2 = V 2

0
− ~V 2 = c2, Lcov

in (1) actually vanishes. However the Lagrange Equations:

d

dτ

(

∂Lcov

∂Vµ

)

− ∂Lcov

∂Xµ

= 0 (3)

corresponding to a stationary value of the action, are determined only by the functional
dependence of Lcov on Vµ and Xµ, not on its value. Since ∂Lcov/∂Xµ = 0, these equations

are:
dPµ

dτ
= 0, P0 ≡ −∂Lcov

∂V0

, Pi ≡
∂Lcov

∂Vi

(4)

where the indices µ (i) denote components of four-(three-) vectors. The definition of Lcov

in (1) gives for the energy-momentum four-vector P = (P0; ~P ):

P0 = mV0 = mcγv = mc
dt

dτ
, ~P = m~V = mγv~v = mγv

d ~X

dt
. (5)

Because, from the first equation in (4), Pµ is time-independent, the first-order differential

equations in (5) may be integrated to give [2]:

t − tI =
P0

mc
(τ − τI), Xi − XiI =

Pi

γvm
(t − tI) (6)

The integration constants tI and τI describe, respectively, the synchronisation of a clock,
C, recording time t, at rest in the frame S where the object has velocity ~v, and a clock C’,

recording time τ , at rest in the proper frame, S’, of the object. The integration constants
XiI depend on the choice of the origin of spatial coordinates in the frame S. Since (5)

gives P0/mc = γv and Pi/γvm = vi, the space-time geometry of the uniformly moving
object in the inertial frame S is completely specified by the equations:

t − tI = γv(τ − τI), Xi − XiI = vi(t − tI). (7)

The first, time, transformation equation describing the time dilation (TD) effect contains

no spatial coordinates. The TD effect is therefore a universal one for a pair of clocks at

any positions in the frames S and S’. The other equations describing the motion of the
object (its worldline) in the frame S are the same as in Galilean relativity. Without loss
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of generality (because of the isotropy of space) ~X may be chosen parallel to ~v, and tI and
τI may be chosen so that the transformation equations become:

t(C) = γvτ = γvt(C
′), x(C′) − x(C′)I = vt(C). (8)

Now the uniformly moving object is the clock C′, and when x(C′) = x(C′)I the clocks are
synchronised so that t(C′) = t(C) = 0. Since the origin of spatial coordinates in the frame

S’ may be chosen in an arbitary manner, it is always possible to set x′(C′) = x(C′)I = d′

so that the transformation equations become:

x′(C′) = d′, x(C′) = vt(C) + d′, t(C) = γvt(C
′). (9)

If there is another clock, C̃′, at rest in S’ at x′(C̃′) = d̃′, then, using the same spatial

coordinates in S and S’ as in (9), the transformation equations are:

x′(C̃′) = d̃′, x(C̃′) = vit(C) + d̃′, t(C) = γvt(C̃
′). (10)

Similiarly to C′, C̃′ is synchronised with C so that when x(C̃′) = d̃′ then t(C̃′) = t(C) = 0.
The purely mechanical (or electronic) operation of setting the clocks C′, C̃′ and C to a

common epoch at some instant can always be performed. The TD relation predicts only
the relative rate of clocks at rest in S and S’, not their settings [4]. It follows from the

TD relations in (9) and (10) that γvt(C
′) = t(C) = γvt(C̃

′) or that t(C′) = t(C̃′) so that
the clocks C′ and C̃′, at different postions in S’, are synchronised (i.e. record the same

epoch) for an arbitary value of the epoch t(C) —there is no ‘relativity of simultaneity’
(RS) effect. Subtracting the first equation in (9) from the first in (10) and the second in

(9) from the second in (10) gives:

x′(C̃′) − x(C′) ≡ L′ = d̃′ − d′ = x(C̃′) − x(C′) ≡ L. (11)

The spatial separation of the clocks is therefore the same in S and S’ at all times —there
is no ‘length contraction’ (LC) effect. How the spurious RS and correlated LC effects

arise in conventional special relativity theory is explained in Appendix B.
The equations (9) and (10) provide a complete description of the relativistic space-time

geometry of the clocks C′ and C̃′ in the inertial frames S and S’. To see the equivalence
of these formulae to the more familiar Lorentz transformation (LT) equations it may be

noted that, considering the clock C′:

t(C) − v(x(C′) − d′)

c2
= t(C)(1 − v2

c2
) =

t(C)

γ2
v

=
t(C′)

γv

(12)

or

t(C′) = γv

[

t(C) − v(x(C′) − d′)

c2

]

(13)

which is the time LT with a particular choice of spatial coordinates and clock synchroni-

sation constants. The corresponding space transformation follows immediately from the
first two (worldline) equations in (9):

x′(C′) − d′ = γv[x(C′) − d′ − vit(C)] = 0. (14)

This equation also holds true if γv is replaced by any other (non-infinite) constant showing
that all relevant physical information is already to be found in the worldline equations.
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The description of the space-time geometry of a uniformly moving object is now com-
plete. Also the components of the energy-momentum four-vector in (5) have been derived

from the Lagrange Equations (4). The transformation equations of the components of
~P are now derived by first considering the transformation law of the TD factor γ. For

this a particular configuration of uniformly moving clocks is considered that actually
corresponds to the one realised in the Hafele-Keating experiment performed in 1971 [5]

where the time intervals recorded by airborne clocks circumnavigating the Earth were
compared with those registered by clocks on the surface of the Earth. Three clocks, C, C′

and C′′ are considered. The first two are at rest in the inertial frames S and S’ considered
previously, where C′ moves with speed v along the positive x-axis in S. The clock C′′

moves with speed u′ in the frame S’ at an arbitary angle θ′ relative to the x′-axis so that
u′

x′ = u′ cos θ′b. Without loss of generality it may be considered to move in the x′-y′ plane.

The calculation is based on a generalisation of the inverse interval transformation

equation:

∆t(C) = γv

[

∆t(C′) +
v∆x′(C′)

c2

]

(15)

where ∆t(C) ≡ t2(C) − t1(C) etc, that may be derived by eliminating ∆x(C′) from the

interval LT equations that may be derived from (13) and (14). Since ∆x′(C′) = 0, (15)
is in fact equivalent to the TD relation in (9). Suppose now that the intervals ∆t(C),

∆t(C′) and ∆x′ in (15) correspond to pairs of points on the world line of C′′. In this case
the following relations hold:

∆x′(C′′) = u′

x′∆t(C′), (16)

∆t(C′) = γu′∆t(C′′) ≡ γ′(C′′)∆t(C′′), (17)

∆t(C) = γv∆t(C′) = γ(C′′)∆t(C′′) ≡ γu∆t(C′′). (18)

Combining (15)-(18) leads to the following transformation law for the TD factor for the
clock C′′ between the frames S’ and S:

γ(C′′) = γ(C′)[γ′(C′′) + β(C′)β ′

x′(C′′)γ′(C′′)] ≡ γu = γvγu′[1 + βvβu′

x′
] (19)

where
γ(C′) ≡ γv, β(C′) ≡ βv, β ′

x′(C′′) ≡ βu′

x′
.

A transparent notation is introduced here for the TD factors γ and scaled velocities β in
which the observed moving clock, and the frame from which the TD effect is viewed, are

explicitly specified.
Since transverse spatial intervals are invariant under transformation between the

frames S and S’, the y component of the four-vector velocity of C′′ is invariant:

Uy =
dy

dτ
=

dy′

dτ
= U ′

y′ (20)

it follows from (20) that

γuuy = γu′u′

y′ (21)

bIn the Hafele-Keating experiment the clock C′′ was located in the aircraft, C′ at a fixed position on the surface
of the Earth and C was a hypothetical clock recording ‘coordinate time’ in a non-rotating frame comoving with the
centroid of the Earth.
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which, when combined with (19), gives the transformation law:

uy ==
u′

y′

γv(1 + βvβu′

x′
)
. (22)

The definition of γv and (19) and (22) give:

βux
=

√

β2
u − β2

uy
=



1 − 1

γ2
u

−
(

βu′

y′

γv(1 + βvβu′

x′
)

)2




1

2

=

[

1 −
(1 − β2

v)(1 − β2

u′

x′

)

(1 + βvβu′

x′
)2

]

1

2

=
βv + βu′

x′

1 + βvβu′

x′

. (23)

Multiplying both sides of (19) by c and using the definition (2) of a four-vector velocity

gives the transformation law of the temporal component of U :

U0 = γv(U
′

0′ + βvU
′

x′). (24)

The transformation law of the longitudinal component of U is given by (19) and (23) as:

U ′

x′ + βvU
′

0′ = cγu′(βu′

x′
+ βv) = cγu′(1 + βvβu′

x′
)βux

=
γuβux

γv

(25)

or, transposing,

γuβux
= Ux = γv(U

′

x′ + βvU
′

0′). (26)

Note that the formulae (23), (19) or (24), and (26) are algebraically equivalent, i.e. on
posing any one of them, the other two may be derived by purely algebraic manipulation.

The transformation laws of the energy-momentum four vector follow from the defini-
tions in (5) and the transformation laws (20), (24) and (26) of the components of the

velocity four-vector:

P0 = γv(P
′

0′ + βvP
′

x′), Px = γv(P
′

x′ + βvP
′

0′), Py = Py′. (27)

The identity γ2

u − γ2

uβ
2

u ≡ 1 and the relations in (5) between the components of the
energy-momentum four-vector and the velocity four-vector give

m2c4 = c2P 2

0
− c2 ~P 2 (28)

or, setting E ≡ cP0 = γumc2,

E(m, P ) =
√

m2c4 + P 2c2 (29)

where P ≡ |~P |. If P � mc2, (29) gives

E(m, P ) ' mc2 +
P 2

2m
(30)

so that E(m, P = 0) = mc2, which is the operationally correct statement of Einstein’s

famous formula, in which the mass m is Lorentz scalar independent of the velocity of the
object [6].

It is important to stress that there is no conflict between the above assertion of the
absence of RS and LC and the results of existing experimental tests of special relativity.

This important question is addressed in Section 9 of Ref. [7]. Different experimental tests
of special relativity may be categorized as follows:
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(i) Isotropy and source independence of the speed of light.

(ii) Measurements of the relativistic Doppler effect.

(iii) Tests of relativistic kinematics.

(iv) Tests of time dilation.

(v) Tests in lepton g − 2 experiments.

(vi) Tests of length contraction in particle production models.

None of these has provided any evidence for the existence of the RS and LC effects. The

conventional text book relativistic analysis of the Michelson-Morley experiment (MME)
is cited in Ref. [8] as evidence for the LC effect. However, as discussed in Section 8 of

Ref. [7], the putative contraction of the longitudinal arm in the MME is not only the
result of a calculation different that by which LC is derived from misuse of the LT but

also implies lack of space-time contiguity of emission events and their sources in different
inertial frames. The correct relativistic analysis of the MME [7] shows that there is

no contraction of the longitudinal arm. Many experiments have verified the TD effect
both for macroscopic clocks [5] and for the observed lifetimes of elementary particles

in motion [9, 10]. The kinematical transformation formulae (24) and (26) are verified in
many different experiments in the categories (ii) and (iii) above. The most recent of these

experiments are cited in Ref. [7], earlier ones in Ref. [8]. In agreement with Feinberg [12]
it is concluded in Ref. [7] that no convincing evidence for LC is provided by the tests in

category (vi).
Although at this time of writing no experimental test of RS exists, since this is an O(β)

(not an O(β2)) effect, it can readily be tested using modern high precision clocks. Such

tests, using artificial satellites of the Earth, have been proposed. [7, 11] by the present
author.

In Ref. [2], ZZP considered the covariant actionc:

SZZP

cov
≡
∫

dτLZZP

cov
≡ −m

2

∫

dτe(τ)

[

(

dXµ

e(τ)dτ

)2

+ 1

]

(31)

where units with c = 1 are used. Requiring that the action is stationary with respect to
variation of e(τ) gives

[e(τ)dτ ]2 = dX2

µ = (dτ)2 (32)

so that e(τ) = 1. Restoring the units and definitions of the action in Eq. (1) then gives:

SZZP

cov
= −m

2

∫

dτ [V 2 + c2] = −mc2

∫

dτ = −mc2

∫

dt

γv

= −mc2

∫

dt
√

1 − β2
v ≡ SPlnk

rel
. (33)

The action SZZP

cov
is then actually identical (up to an arbitary additive constant) to the one

SPlnk

rel
introduced by Planck [1] which contains the non-covariant relativistic Lagrangian,

L, in Eq. (A1) of Appendix A.

cNotice that this Lagrangian differs from that in (1) by an additive term −mc2 and from that given by Goldstein [3]
by an additive term −mc2/2. In Ref. [2] the action of (31) was associated with Hilbert’s General Relativity paper [13]
and called SSR:1915 where 1915 is the publication year of Hilbert’s paper. However careful examination of the latter
fails to reveal any formula resembling Eq. (31). In Ref. [2] a paper [14], cited in connection with Eq.(31), contains to
citation or mention of Hilbert’s paper.
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Because an arbitary constant may be added to a Lagrangian without changing the
Lagrange equations, identical predictions are obtained from Scov in Eq. (1) and SZZP

cov
in

Eq. (40). However, in Feynman’s path amplitude formulation of quantum mechanics, the
covariant space-time propagator K(Xµ) of a free particle has the asymptotic form [15, 16]:

K(Xµ) ' exp

[

−i
(Et − px)

h̄

]

= exp

[

−i
mc2τ

h̄

]

= exp

[

i
SZZP

cov

h̄

]

(34)

since, from (33), −mc2τ = SZZP

cov
. In the Feynman propagator, therefore, the redundancy

in the definition of the Lagrangian and the corresponding action, allowed in classical
mechanics, is removed.

It is also interesting to remark that, as first pointed out by Dirac [17, 18], it is the be-
haviour of K(Xµ) in the limit h̄ → 0 that provides the fundamental quantum mechanical

basis for Hamilton’s Principle —the condition that the action should be stationary for
variation of space-time trajectories around the classical path. From this point-of-view the

derivations of Planck, ZZP and the present paper of space-time geometry or relativistic
kinematics can all be considered as necessary consequences of quantum mechanics in its

path-amplitude formulation [19, 20, 16].
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Appendix A

Planck’s derivation of the formulae of relativistic kinematics for a uniformly moving

object [1] is recalled here using the notation of the present paper. A non-covariant
relativistic Lagrangian, L, for a free particle was defined as:

L ≡ −mc2

√

1 − v2

c2
+ const. (A.1)

where

v2 =

(

d ~X

dt

)2

≡ ( ~̇X)2. (A.2)

The relativistic three-momentum is then given by the Lagrange Equations as

Pi ≡
∂L

∂Ẋi

=
mẊi

√

1 − v2

c2

. (A.3)

If H denotes the Hamiltonian of the object then

H(m, v) ≡ ~P · ~̇X − L = m





~̇X2

√

1 − v2

c2

+ c2

√

1 − v2

c2



+ const.

=
mc2

√

1 − v2

c2

[

v2

c2
+ 1 − v2

c2

]

+ const.

=
mc2

√

1 − v2

c2

+ const. . (A.4)

Combining (A.3) and (A.4) gives:

H(m, P ) = mc2

√

1 +
P 2

m2c2
+ const. . (A.5)

Einstein had previously derived [22] the formula for the relativistic kinetic energy, T , of

an object:

T (m, v) =
mc2

√

1 − v2

c2

− mc2. (A.6)

Identifying, as in Newtonian classical mechanics, the Hamiltonian with the energy, E, of
the object and setting the arbitary constant in (A.5) to zero gives then:

E(m, v) ≡ H(m, v) = E(m, v) =
mc2

√

1 − v2

c2

(A.7)

so that
E(m, v = 0) = mc2 (A.8)

the fundamental equation that Einstein had so much difficulty to derive in a rigorous
manner [6, 21].
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Planck did not mention Eq. (A8), deriving only (A.3), (A.4) and (A.5). It still follows
however on setting to zero the arbitary constant in (A.5) that

E(m, P = 0) ≡ H(m, P = 0) = mc2. (A.9)

Defining:

T (m, v) ≡ E(m, v) − E(m, v = 0)

= E(m, v) − E(m, P = 0)

= E(m, v) − mc2 (A.10)

recovers Einstein’s formula (A.6).
Planck therefore derived the formula for the relativistic momentum of an object from

Hamilton’s Principle, as done by ZZP and in the present paper. Because Planck employed
a non-covariant Lagrangian it was not possible to obtain the relativistic energy directly

from the Lagrange Equations, as in (4) and (5) above. Instead Planck constructed the
relativistic Hamiltonian from the postulated Lagrangian and the derived relativistic mo-

mentum. Identifying this Hamiltonian with the relativistic energy then gives the formula
(A.5) for the latter in terms of m and P . Einstein’s famous ‘E = mc2’ formula relating

the energy of an object to its rest mass then follows from (A5) on setting the arbitary
additive constant to zero. It is clear in this derivation that the mass m is a Lorentz

scalar quantity [6]. Finally, it may be remarked that, as described above, consistency

with quantum mechanics requires the additive constants in (A.1), (A.4) and (A.5) to be
zero.
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Appendix B

The LT describing the clock C′, as observed from the frame S, (13) and (14) above,

may be rewritten as:

t′(d′) = γv

[

t(C) − v(x(d′) − d′)

c2

]

, (B.1)

x′(d′) − d′ = γv[x(d′) − d′ − vt(C)] = 0 (B.2)

where the clock C′ has been labelled with its x′ coordinate. Independently of the value of
d′, the clock C′ is synchronised with the clock C so that when x(d′) = d′, t′(d′) = t(C) = 0.

The conventional space-time LT is given by setting d′ = 0 in (B.1) and (B.2):

t′(0) = γv

[

t(C) − vx(0)

c2

]

, (B.3)

x′(0) = γv[x(0) − vt(C)] = 0. (B.4)

The spurious RS and LC effects arise when it is incorrectly assumed that (B.3) and (B.4)

also correctly describe a synchronised clock at an arbitary position x′ = d′. i.e. that

t′(d′) = γv[t(C) − vx(d′)

c2
] (B.5)

x′(d′) = γv[x(d′) − vt(C)] = d′ 6= 0. (B.6)

Subtracting (B4) from (B6) gives:

x′(d′) − x′(0) = d′ = γv[x(d′) − x(0)] ≡ γvd (B.7)

which is the ‘LC’ effect, while subtracting (B.3) from (B.5) gives

t′(d′) − t′(0) = −γv

v[x(d′) − x(0)]

c2
= −vd′

c2
(B.8)

which is a ‘RS’ effect since the common time t(C) in S, in Eqs. (B.3)-(B.6), gives, according

to (B.8), t′(d′) 6= t′(0).
Both (B.1), (B.2) and (B.3), (B.4) do correctly describe a clock that is synchronised

with C such that t′(d′) = t(C) = 0 when x(d′) = d′ (for (B.3) and (B.4), d′ = 0). To
see the relation between the correct equations describing a synchronised clock at x′ = d′,

(B.1) and (B.2), and the incorrect equations (B.5) and (B.6), the former pair of equations
are written as:

t′(d′) = γv

[

t(C) − vx(d′)

c2

]

+ T, (B.9)

x′(d′) = γv[x(d′) − vt(C)] + X (B.10)

where

T =
vγvd

′

c2

′

, (B.11)

X = −d′(γv − 1). (B.12)

Thus the correct equations describing synchronised clocks in S and S’, (B.1) and (B.2)
differ from the ‘standard LT equations’ (B.5) and (B.6) by, velocity-dependent, additive,
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constants on the right sides of the latter equations. The necessity to include such con-
stants, in order to correctly describe synchronised clocks at different spatial positions,

was clearly stated by Einstein himself in the original 1905 special relativity paper just
after the derivation of a LT equivalent to (B.3) and (B.4) above (i.e. one with d′ = 0) [22]:

“If no assumption whatever be made as to the initial position of the moving system
and as to the zero point of τ an additive constant is to be placed on the right side of

these equations”d

To the present writer’s best knowledge, this was never done either by Einstein himself,

or any other author, before the work presented in Ref. [7]. The analysis of the present
paper, which does not make use of the space-time LT, and in which the important additive

constants appear in the guise of constants of integration in worldline and TD relations,
such as (9) and (10), demonstrates directly the spurious nature of the ‘RS’ and ’LC’

effects of conventional special relativity.

dIn the notation of the present paper, τ = t′ = t(C′).
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