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Abstract

Adaptation of a calculation due to Lewis allows derivation of all equations of
Special Relativity by straightforward application of Newton’s Laws of motion and
the equivalence of work and energy. How the spurious ‘length contraction’ and ‘rel-
ativity of simultaneity’ effects of conventional Special Relativity arise from incorrect
manipulation of integration constants, in the description of space-time experiments,
is explained. Only the universal (position-independent) time dilation effect of Spe-
cial Relativity distinguishes it from Galilean Relativity.

PACS 03.30.+p



1 Introduction

The laws of physics are mathematically encapsulated in differential equations [1] but
in their application to specific problems it is necessary to find appropriate solutions of
these equations. This requires, firstly, the introduction of systems of units in order to
parameterise physical quantities, secondly, coordinate axes to specify values of the physical
parameters, thirdly, some initial conditions (fixed values of the parameters) to describe
the actual physical problem under consideration and, lastly, the integrals of the relevant
differential equations. For the mechanical and kinematical problems to be discussed in
the present article, all the differential equations concerned are ordinary ones, of first
order, with constant coefficients, so all the integrals reduce to the simple form: k

∫

dx =
kx + constant. It will be seen that an inappropriate choice of certain constants of
integration in problems involving space and time measurements has obfuscated predictions
obtained from the Lorentz Transformations (LT) of Special Relativity (SpR) for more than
a century now. This situation has been previously discussed in [2, 3, 4, 5] and references
therein.

The mathematics employed in the present paper is elementary, however great care is
taken throughout to precisely define the operational meaning of all symbols appearing in
the equations. It will be seen that it is just the failure to correctly assign the values of fixed
parameters specifying the initial conditions of space-time experiments, involving clocks
in motion, that underlies the prediction of spurious ‘length contraction’ and ‘relativity of
simultaneity’ effects in conventional SpR.

This paper is organised as follows: in the following section spatial transformations

in both Galilean relativity (GaR) and SpR are discussed in the context of Newton’s

First Law of motion. In Section 3 time dilation and the equivalent interval Lorentz

time transformation are derived by posing general ansätze for relativistic momentum and

energy and applying Newton’s Second Law of motion as well as the equivalence of work

and energy. This calculation, in the guise of a prediction for relativistic mass increase, is

due to Lewis [6] and was later given in the Feynman Lectures in Physics [7]. The interval

transformation equations obtained in the previous sections are integrated in Section 4 and

used to obtain the transformations of event coordinates (x,t) in a frame S into another

inertial frame S’: (x′(x, t),t′(x, t)). The events considered lie on the worldline of a body

that is in motion in the frame S and at rest in S’. In Section 5 event transformation

equations for two spatially-separated bodies at rest in S’ are considered. Finally, Section 6

explains the erroneous assignment of coordinate origins that results in ‘length contraction’

and ‘relativity of simultaneity’ in conventional SpR.

2 Newton’s First Law and spatial transformations

Newton’s first law of motion [8]:
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Every body preserves its state of being at rest or of moving uniformly

straight forward except in so far as it is compelled to change its state

by forces impressed.

is expressed, mathematically, by the first order differential equation 1:

ds

dt
= v = constant (2.1)

where ds is an infinitesimal spatial displacement of the body during the infinitesimal time
interval dt, and the constant v is, by definition, the velocity which quantitatively expresses
the state of ‘moving uniformly straight forward’.

Integration of (2.1) gives:
∫

s(t)

s(t0)
ds = v

∫

t

t0

dt (2.2)

i.e.
s(t) − s(t0) = v(t − t0)

or, equivalently:
s(t) − s(t0) − v(t − t0) = 0. (2.3)

The time interval t − t0 and the spatial interval s(t) − s(t0) in (2.3) are, respectively,
invariant with respect to the initial setting of the clock used to measure the epoch t and
the coordinate system used to specify the position of the body.

Introducing the coordinate frame S in which the body moves with velocity v and the
frame S’ in which the body is at rest, as well as coordinate axes x, x′ in S, S’ parallel to
the direction of motion of the body, enables (2.3) to be written (v = |v|):

x(t) − x(t0) − v(t − t0) = 0 (2.4)

while the corresponding relation in the frame S’ (where the velocity of the body vanishes)
is:

x′[t′(t)] − x′[t′(t0)] = 0. (2.5)

The epochs t′(t) and t′(t0) are recorded by a clock at rest in the frame S’ while the epoch
t is recorded by a clock at rest in the frame S. The functional dependence t′(t) will be
derived from Newton’s Second Law in the following section.

It is illuminating to compare the equations of motion (worldlines) (2.4) and (2.5)
where all mathematical symbols have a clear operational definition, with the conventional
relativistic spatial transformation laws purporting to relate an event (x,t) in the frame S
with the same event (x′,t′) as observed in the frame S’:

x′ = x − vt [Galilean relativity (GaR)], (2.6)

x′ = γ(x − vt) [Special relativity (SpR)] (2.7)

where γ ≡ 1/
√

1 − (v/c)2 and c is the speed of light in free space.

1Three-vectors are denoted throughout by boldfaced type, as v, p, F.
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Evidently (2.4) and (2.5) can be combined in a single equation as:

x′[t′(t)] − x′[t′(t0)] = g{x(t) − x(t0) − v(t − t0)} = 0 (2.8)

where g is an arbitary, finite, constant or function of v. The GaR transformation of (2.6)
is recovered on setting g = 1, t0 = 0, and x′[t′(t0)] = x(t0) = 0 in this equation to yield

x′[t′(t)] = x(t) − vt = 0 (2.9)

while setting g = γ, t0 = 0, and x′[t′(t0)] = x(t0) = 0 in (2.8) gives

x′[t′(t)] = γ(x(t) − vt) = 0. (2.10)

Consistency of (2.6) with (2.9) and (2.7) with (2.10) then requires that x′ = 0 and
x(t = 0) = 0 in (2.6) and (2.7). This comparison shows that the transformation formulas
(2.6) and (2.7) are only valid for particular choices of clock offset in the frame S and
coordinate systems in the frames S and S’. Furthermore the physical meaning of both the
GaR and SpR spatial transformations is the same as that of the separate equations of
motion (2.4) in S and (2.5) in S’. A corollary of this (since the coefficient g in (2.8) is
arbitrary) is that there is no physical distinction between the (correctly interpreted) GaR
transformation of (2.6) and the SpR transformation of (2.7).

3 Newton’s Second Law and temporal transforma-

tions

Newton’s Second Law of motion states [9]:

A change of motion is proportional to the motive force impressed and takes

place along the straight line in which that force is impressed.

Newton previously defines ‘quantity of motion’ [10]:

Definition 2

Quantity of motion is a measure of motion that arises from the velocity

and the quantity of matter jointly.

as well as ‘impressed force’ [10]:

Definition 4

Impressed force is the action excerted on a body to change its state of

either resting or of moving uniformly straight forward.

Newton’s definition of ‘quantity of matter’ somewhat, however, begs the question,
since only how to calculate it from the density and volume of a body is stated as well
as its proportionality to weight. Following Newton, the ‘quantity of matter’ associated
with a body will be denoted by m and called ‘mass’. This Newtonian concept is a fixed
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physical attribute of a body whether in motion or at rest, to be distinguished from the
velocity-dependent masses employed in some formulations of SpR. Calling ‘quantity of
motion’ (in French, literally, ‘quantité de mouvement’) momentum and denoting it by p,
Newton’s Definition 2 states that p = mv where the velocity v is defined in Eq. (2.1).
Newton’s formulation of his Second Law is therefore not (as in elementary text books)
‘force = mass × acceleration’ but instead:

dp

dt
≡ d(mv)

dt
= F (3.1)

where the symbol F denotes the impressed force that is parallel to dp/dt. This is a first
order differential equation, not a second order one, as in the conventional statement of
the Second Law, and is particularly well suited to relativistic generalisation. Indeed, in
SpR, the form of the law is unchanged, only the definition of momentum is modified. A
general modification of the definition of momentum, consistent with dimensional analysis,
is:

p ≡ mγ(v)v = mγ(v)
ds

dt
(3.2)

where γ(v) is an arbitary real dimensionless function of v. It will be seen that inserting
this generalised definition of momentum in (3.1) allows an unambigous determination of
the function γ(v) as well as suggesting the relativistic generalisation of the energy concept
of classical mechanics.

Taking the scalar product of both sides of (3.1) with 2p and using (3.2) gives:

2p · dp

dt
= 2mγ(v)

ds

dt
· F = 2mγ(v)

dW

dt
= 2mγ(v)

dE

dt
(3.3)

where the equivalence of mechanical work to energy:

dW = F · ds = dE (3.4)

is assumed. Since the dimensions of energy are ML2T−2 the last member of (3.3) suggests
an expression for the relativistic energy, E of a body of mass m and velocity v:

E ≡ V 2mγ(v) (3.5)

where V is a universal constant with dimensions of velocity, the physical significance of
which will be elucidated below. Multiplying Eq. (3.3) through by the factor V 2 and
cancelling out the time differential in the denominator gives the first order differential
equation (p ≡ |p|):

2V 2p · dp = V 2d(p2) = 2EdE = d(E2) (3.6)

which yields, on integration:
V 2p2 = E2 + C. (3.7)

The integration constant C is determined by setting v = 0, p = 0, which, with the
definition (3.5) of E gives:

0 = V 4m2γ(0)2 + C (3.8)

so that
E2 = V 4m2γ(0)2 + V 2p2. (3.9)
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Substituting for p and E in this equation using the definitions (3.2) and (3.5), cancelling
out a common factor m2, rearranging, and taking a square root, it is found that:

γ(v) =
γ(0)

√

1 −
(

v

V

)2
=

1
√

1 −
(

v

V

)2
(3.10)

where it is assumed that γ(0) = 1 in order to recover the Newtonian definition of momen-
tum p = mv in the limit v ≪ V .

Taking the ratio of Eq. (3.2) to (3.5) and using (3.9) with γ(0) = 1 it is found that:

v =
pV 2

E
=

pV√
m2V 2 + p2

. (3.11)

Inspection of this equation gives one important physical meaning of the universal constant
V . In any inertial frame where the relativistic energy, E, is much greater than the energy
equivalent, mV 2, of the mass of the body, the velocity of the body will be less than, but
very close to, V . For a massless particle, such as a photon, (3.11) gives exactly v = V for
all values of E and p = E/V . In this way V may be identified with the speed of light in
free space, c [11].

Combining (3.5) and (3.10) it can be seen (as first noted by Einstein [12]) that V is
also the limiting velocity of any body, due to the action of impressed forces, in any inertial
frame. In the limit v → V , (3.10) shows that E → ∞, requiring the application of an
infinite amount of mechanical work to attain the speed V .

Setting γ(0) = 1 in (3.9), transposing and inserting for p and E from (3.2) and (3.5)
gives:

E2 − V 2p2 = V 4m2 = V 4γ(v)2m2 − V 2γ(v)2v2m2. (3.12)

Because the first member of (3.12) is independant of v the relation holds in all inertial
frames i.e. for all values of v, E and p consistent with Eqs. (3.2) and (3.5), including
v = 0, E = mV 2 and p = 0. Cancelling a common factor of m2V 2, setting v = ds/dt,
multiplying through by (dt)2 and dividing through by γ(v)2 yields the time-like invariant
interval relation:

V 2(dt)2 − (ds)2 =

(

V dt

γ(v)

)2

≡ V 2(dτ)2. (3.13)

Setting ds = 0, v = 0 and γ(v) = 1 it is seen that dt → dτ = dt′, the interval dt′ being
that measured by a clock in the rest frame of the body, so that a time dilation relation
between the time intervals dt and dt′ = dτ is established by the last member of (3.13):

dt = γ(v)dt′ = γ(v)dτ. (3.14)

Combining this equation with the equation of motion of the body in the frame S: ds = vdt
yields the Lorentz transformation for time intervals:

dt′ =
dt

γ(v)
=

γ(v)dt

γ(v)2
= γ(v)

[

1 −
(

v

V

)2
]

dt = γ(v)

[

dt − vds

V 2

]

. (3.15)

Note that, given the equation of motion in the frame S, the time dilation relation (3.14)
and the Lorentz transformation of time, (3.15), are physically equivalent.
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To summarize, the coordinate-independent space-time transformation equations of
infinitesimal spatial and temporal intervals are therefore, in GaR:

ds′ = ds − vdt = 0, dt′ = dt (3.16)

and in SpR:

ds′ = γ(v)(ds − vdt) = 0, dt′ = γ(v)

[

dt − vds

V 2

]

(3.17)

or, more simply:
ds′ = 0, ds = vdt, dt = γ(v)dt′. (3.18)

Since the factor γ(v) in the space transformation equation in (3.17) may be replaced by an
arbitary, finite, constant or function of v, without changing the physical meaning of the
equation, the space transformations of SpR and GaR are physically equivalent. The only
difference between GaR and SpR is the replacement of universal time intervals dt = dt′ of
GaR by the time dilation relation dt = γ(v)dt′ of SpR which implies that a clock, at rest
in the frame S’ considered above, will be seen to be running slow, relative to an identical
clock at rest in the frame S, by all observers.

4 Transformations of space and time coordinates be-

tween inertial frames

To obtain the transformation equations between an ‘event’ (x,t) in the frame S and
the corresponding one (x′(x, t),t′(x, t)) in the frame S’, as specified by the above coor-
dinate systems, the interval transformations of Eq. (3.16) or (3.17) must be integrated.
Performing the integration gives the indefinite integrals:

x′ = x − vt + XGaR , t′ = t + TGaR [Galilean relativity] (4.1)

x′ = γ(v)[x − vt] + XSpR , t′ = γ(v)
[

t − vx

V 2

]

+ T SpR [Special relativity] (4.2)

The values of the integration constants: XGaR, TGaR, XSpR and T SpR depend on the
choice of coordinate origins and clock offsets in the frames S and S’. Allowing a completely
arbitary choice of these constant parameters the above equations may be written, for GaR
as:

x′(t) − x′(t0) = x(t) − x(t0) − v(t − t0) = 0, (4.3)

t′(t) − t′(t0) = t − t0 (4.4)

which give:
XGaR = x′(t′0) − x(t0) + vt0, TGaR = t′0 − t0 (4.5)

and for SpR as:

x′(t) − x′(t0) = γ(v)[x(t) − x(t0) − v(t − t0)] = 0, (4.6)

t′(t) − t′(t0) = γ(v)

[

t − t0 −
v[x(t) − x(t0)]

V 2

]

(4.7)
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so that

XSpR = γ(v)[vt0 − x(t0)] + x′(t′0), T SpR = γ(v)

[

vx(t0)

V 2
− t0

]

+ t′0. (4.8)

Choosing now t0 = t′(t0) = 0 and, making use of the freedom of choice of coordinate
origins in the frames S and S’, setting x′(t′ = 0) = x(t = 0) = χ, gives for GaR:

x′(t′) − χ = x(t) − χ − vt = 0, t′ = t. (4.9)

i.e.
XGaR = 0, TGaR = 0. (4.10)

and for SpR:

x′(t′) − χ = γ(v)[x(t) − χ − vt] = 0, (4.11)

t′(t) = γ(v)

[

t − v[x(t) − χ]

V 2

]

=
t

γ(v)
(4.12)

so that

XSpR = [1 − γ(v)]χ, T SpR =
γ(v)vχ

V 2
(4.13)

which are physically equivalent to:

x′(t′) = χ, x(t) = χ + vt, t′(t) =
t

γ(v)
. (4.14)

The first two relations in (4.14) are solutions of the differential equations of motion of the
body in the frames S’ and S respectively, for a particular choice of coordinate systems and
clock offsets, which are identical in GaR and SpR. The time dilation relation t = γ(v)t′,
relating the clock epochs t and t′, is therefore the unique physical effect that distinguishes
SpR from GaR.

As discussed in detail elsewhere [3], the necessity to include the additive constants

XSpR and T SpR on the right sides of the ‘standard’ LT: x′ = γ(x − vt), t′ = γ(t − vx/c2)

in order to correctly describe a synchronised clock not placed at the origin of coordinates

in S’, was clearly stated in Einstein’s original paper on SpR [12]. However, this was never

done by him nor, to the present writer’s best knowledge, by any other author before the

work presented in Ref. [2].

5 Transformation equations for two spatially-separated

bodies at rest in the same inertial frame

Using the same coordinate systems as in (4.14), the transformation equations for two
clocks C’1 and C’2, recording epochs t′1 and t′2 respectively, placed at arbitary positions
on the x′ axis, with arbitary epoch offsets, t′1(0) and t′2(0), are (χ2 > χ1):

x′

1(t
′

1) = χ1, x1(t1) = χ1 + vt1, t′1(t1) − t′1(0) =
t1

γ(v)
, (5.1)

x′

2(t
′

2) = χ2, x2(t2) = χ2 + vt2, t′2(t2) − t′2(0) =
t2

γ(v)
. (5.2)
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It follows from (5.1) and (5.2) that

χ2 − χ1 = x2(t2) − x1(t1) − v(t2 − t1). (5.3)

The separation of the clocks at a fixed epoch in the frame S: t1 = t2 = t is then:

L ≡ x2(t) − x1(t) = χ2 − χ1 = x′

2(t
′

2) − x′

1(t
′

1) ≡ L′. (5.4)

There is therefore no ‘length contraction’ effect when the separation of the moving clocks
is measured, at any epoch, t, in the frame S [3, 4, 5].

It is important to note that the equality of length intervals: L′ = L is not an artifact
of the particular choice of coordinate origins assumed in (5.1) and (5.2). With the same
separation between the clocks, but a different choice of coordinate origin in the frame S’:
x′ → x′ + D′ (i.e. shifting the origin of cordinates by the distance D′ in the negative x′

direction) modifies the first equations in (5.1), (5.2) to x′

1(t
′

1) = χ̃1, x′

2(t
′

2) = χ̃2 where
χ̃1 ≡ χ1 +D′, χ̃2 ≡ χ2 +D′. However the spatial separation does not depend on the value
of D′:

L̃′ ≡ χ̃2 − χ̃1 = (χ2 + D′) − (χ1 + D′) = χ2 − χ1 = L′. (5.5)

This is a consequence of the translational invariance of physical quantities in flat space [4].
A similar argument applied in the frame S shows that the separation L is also independent
of the choice of coordinate origin in this frame.

If the clocks C’1 and C’2 are synchronised so that t′1(0) = t′2(0) = 0 when t = 0 the
time dilation relations in (5.1) and (5.2) become, respectively, t′1 = t1/γ(v), t′2 = t2/γ(v),
so that the clocks remain synchronised at any epoch t in the frame S:

t′1(t) =
t

γ(v)
= t′2(t) (5.6)

so there in no ‘relativity of simultaneity’ effect for spatially-separated, synchronised, clocks
[3, 5]. How the spurious ‘length contraction’ and ‘relativity of simultaneity’ effects of
conventional SpR arise from errors in setting parameters specifying initial conditions in
the application of Lorentz transformations for events is explained in the following section.

6 The ‘length contraction’ and ‘relativity of simul-

taneity’ effects of conventional Special relativity

If the clock C’1 is placed at the origin of coordinates in S’ so that χ1 = 0 the corre-
sponding coordinate transformations are given by (4.11) and (4.12) as:

x′

1(t
′

1) = γ(v)[x1(t1) − vt1] = 0, (6.1)

t′1(t1) = γ(v)

[

t1 −
vx1(t1)

V 2

]

. (6.2)

The transformation equations for the clock C’2 placed at x′

2(t
′

2) = χ2 = χ2 − χ1 ≡ L are
given, by the same equations, as:

x′

2(t
′

2) − L = γ(v)[x2(t2) − L − vt2] = 0, (6.3)

t′2(t2) = γ(v)

[

t2 −
v(x2(t2) − L)

V 2

]

. (6.4)
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Figure 1: Clock C1 is placed at the origin of coordinates in the frame S’ and the clock C2

at x′ = L′ in this frame. The conventional space Lorentz transformation x′ = γ(x − vt)
applied at t = 0 to C1 and C2, respectively, give x1 = 0 and x2 = L′/γ. As shown, the
origin, O2, of the coordinate system used to specify the position of C2 in the frame S is
then shifted by the distance L′(γ − 1)/γ from the origin O1 of the coordinate system used
to specify the position of C1 on S. This use of different coordinate systems in the frame
S for C1 and C2 is the origin of the spurious ‘length contraction’ effect: L = L′/γ of
conventional SpR.

The ‘length contraction’ and ‘relativity of simultaneity’ effects arise from the erroneous
assumption that the Lorentz transformations in the ‘standard’ form of (6.1) and (6.2)
(omitting however the crucial ‘= 0’ on the right side) are directly applicable to the event
coordinates of the clock C’2. i.e. instead of (6.3) and (6.4) it is assumed that:

x′

2(t
′

2) = γ(v)[x2(t2) − vt2] = L′ 6= 0, (6.5)

t′2(t2) = γ(v)

[

t2 −
vx2(t2)

V 2

]

. (6.6)

Setting t1 = t2 = t and combining (6.1) and (6.5) it is found that:

L′ ≡ x′

2(t
′

2) − x′

1(t
′

1) = γ(v)[x2(t) − x1(t)] ≡ γ(v)L. (6.7)

This is the putative ‘length contraction’ (LC) effect: L = L′/γ(v).

Combining (6.2) and (6.6) when t1 = t2 = t it is found that:

t′2(t) − t′1(t) =
γ(v)v[x1(t) − x2(t)]

V 2
= −γ(v)vL

V 2
(6.8)

which gives a ‘relativity of simultaneity’ (RS) effect since t′2 − t′1 6= 0 when t1 = t2. The
above is the standard text book derivation of LC and RS. The derivation of (6.7) (but
not of (6.8)) was given by Einstein in the first SpR paper [12].

Subtracting L from both sides of (6.5) and rearranging, using the relation L′ = γ(v)L,
it may be written in a manner which facilitates comparison with Eq. (6.3), in which the
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operational meaning of all symbols is clearly defined. This gives, using (6.7):

x′

2(t
′

2) − L′ = γ(v)[x2(t2) − L − vt2] = 0. (6.9)

As is clear from a comparison of this equation with (6.3) and inspection of Fig. 1, this
corresponds to a different choice of coordinate system in the frame S to specify the position
of the clock C’2 to that used, in the same frame, to specify the position of the clock C’1. In
fact, the origin of the coordinate system used for C’2 is displaced from that of the system
used for C’1 by the distance (see Fig. 1) L′(γ(v) − 1)/γ(v) in the positive x-direction.

Comparing (6.6) with (6.4), which correctly describes synchronisation of C’1 and C’2,
((6.1)-(6.4) give t′1 = t′2 = 0 when t1 = t2 = 0) shows that (6.6) and (6.8) are corrected
by the replacement: x2(t) → x2(t) − L so that (6.8) becomes:

t′2(t) − t′1(t) =
γ(v)v[x1(t) − x2(t) + L]

V 2
=

γ(v)

V 2
[−L + L] = 0 (6.10)

demonstrating the spurious nature of the demonstration of RS derived from Eqs. (6.2)
and (6.6). For direct comparison of the ‘standard’ time transformation equation (6.6)
with (6.4) the former may be written as:

t′2(t2) − t′2(0) = γ(v)

[

t2 −
v[x2(t2) − L]

V 2

]

(6.11)

where t′2(0) ≡ γ(v)vL/V 2. Setting t1 = t2 = 0 in (6.1)-(6.4) gives t′1 = t′2 = 0 whereas the
same settings in (6.1) and (6.11) give, respectively, t′1 = 0 and t′2 = t′2(0) = γ(v)vL/V 2.
This shows that the putative RS effect simply results from the use of clocks that are, by
construction of the transformation equations, unsynchronised. Clearly, synchronisation of
the settings of two clocks, at any chosen instant, is a purely mechanical or electronic pro-
cedure, under the complete control of the experimenter, without any physical significance.
The arguments just presented show that the LC and RS effects result from an inconsistent
assignment of coordinate systems and clock settings for two spatially separated bodies and
so are not bona fide predictions of SpR.
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