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Abstract

Several experiments are proposed to exploit the asymmetrical time dilation effect
observed in the Hafele-Keating experiment. In the first, it is shown how the angular
velocity vector, ~Ω, of the Earth may be determined by observation of time intervals
recorded by airborne clocks following Great Circle routes with different orientations
and directions. Similar time intervals recorded on outward and return flights over
short straight routes enable the determination of the velocity of an arbitary point
on the Earth’s surface, or the relative velocity of two inertial frames in free space.
Finally, time intervals recorded by a clock moving relative to a ship enable both the
speed of the ship relative to the Earth and the local velocity of the surface of the
Earth relative the Earth-centered (non-rotating) inertial frame to be determined.
These experiments demonstrate that, contrary to some statements of the Special
Relativity Principle, internal detection of uniform rectilinear motion is possible.
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1 Introduction

The Hafele-Keating experiment (HKE) performed in October 1971 [1, 2] compared
time intervals recorded by four caesium-beam atomic clocks, carried around the world
in commercial aircraft, to those recorded by precision reference clocks at the U.S. Naval
Laboratory. In the analysis of the experiment, the detailed flight paths of the aircraft
on the West–to–East (W–E) and East–to–West (E–W) flights were taken into account in
the prediction of special relativistic (SR) and general relativistic (GR), or gravitational,
effects. Denoting the time intervals recorded by the Earthbound (airborne) clocks by T ′

(T ′′) the following predictions were obtained [1]

∆T ′(W − E) ≡ T ′′(W − E) − T ′(W − E) = 144 ± 14ns, (GR)

= −184 ± 18ns. (SR)

∆T ′(E − W) ≡ T ′′(E − W) − T ′(E − W) = 179 ± 18ns, (GR)

= 96 ± 10ns. (SR)

The physical origin of the GR effect is gravitational blue-shift of the airborne clock relative
to one on the surface of the Earth due to its higher gravitational potential 1 and so is
determined by the mean altitude of the aircraft. The SR contribution to ∆T ′ arises from
the time dilation (TD) effect. In calculating it, the concept of ‘coordinate time’ [3, 4],
or the equivalent one of ‘base’ and ‘travelling’ frames [5, 6] to be explained below, is
essential. Coordinate time is registered by a hypothetical clock in a non-rotating frame2,
comoving with the centre of the Earth, sufficiently distant that any effect of the Earth’s
gravitational field may be neglected. This is the Earth Centered Inertial (ECI) frame
which is also used in the analysis of SR effects in the GPS system [7]. The experimental
results of the HKE were found to be in good agreement with the above predictions [2]:

∆T ′(W − E) = −59 ± 10ns, (Experiment)

= −40 ± 23ns. ((GR) + (SR))

∆T ′(E − W) = 273 ± 7ns, (Experiment)

= 275 ± 21ns. ((GR) + (SR))

Other experiments were performed in which SR and GR effects near the Earth were
measured and demonstrated to be in good agreement with theoretical predictions [8, 9, 10,
11]. In the experiment of Vessot et al 1980 [9], the SR and GR corrections to the rate of a
hydrogen-maser clock flown in a rocket on a ballistic trajectory with a maximum altitude
of 104km were of comparable magnitude and opposite sign so that exact cancellation of
the effects was observed during both the ascent and descent of the rocket. In the work
described by Alley [10] the altitude-dependence of the GR effect was tested by flying
an aircraft carrying an array of caesium-beam atomic clocks on a closed path with a
racetrack-like configuration over Chesapeake Bay in the State of Maryland USA. The

1The gravitational potential due to the Earth is negative and, assuming spherical symmetry, on and
above the surface of the Earth is proportional to 1/r where r is the distance from the center of the Earth.

2In the approximation that the rotation of the Earth around the centroid of the Solar System is
neglected, this frame is an inertial one.
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same array of clocks was also flown from Washington DC to Thule, Greenland, and back,
to check the predicted almost-exact cancellation [12, 13] of SR and GR effects on the rate
of clocks placed on the Earth’s geoid at different latitudes. In the Spacelab experiment
NAVEX [11] a caesium-beam atomic clock carried by a space shuttle in low-Earth orbit
was compared to similar ground-based clocks, and the sum of the SR and GR predictions
for the relative rate of the clocks was verified. The TD effect and the general relativistic
blue-shift give very large effects on the rates of the satellite-borne clocks of the GPS
system [7] which are compensated for by adjusting the rates of the clocks on the surface
of the Earth before they are sent into orbit. The HKE is however unique in its first
demonstration of asymmetric time dilation effects for clocks on W−E and E−W paths.
This is because [4] satellite-borne clocks have speeds much greater than Earth-bound ones,
so that the time dilation asymmetry in Eq. (2.8) below is imperceptible for them. Only
in the HKE are the speeds, in the ECI frame, of the moving and Earth-bound clocks of
similar magnitude. The demonstration, in the HKE, that the relative rate of two clocks
does not depend only on their relative velocity is of a crucial importance for a correct
understanding of temporal predictions in SR [3, 4, 5, 6].

Asymmetrical time dilation is pure SR effect that can be seen [14] to be an immediate
consequence of the Minkowski metric equation of SR for space-time intervals:

(∆s)2 = c2(∆τ)2 = c2(∆t)2 − (∆~x)2. (1.1)

Suppose that two clocks C’, C” with proper frames S’, S” registering times t′, t′′ have the
world lines ∆~x(C′) = ~v(C′)∆t, ∆~x(C′′) = ~v(C′′)∆t, in the frame S. It then follows from
(1.1) that:

c2(∆t′)2 = (c2 − v(C′)2)(∆t)2, c2(∆t′′)2 = (c2 − v(C′′)2)(∆t)2 (1.2)

where v ≡ |~v|, so that
∆t = γ(C′)∆t′ = γ(C′′)∆t′′ (1.3)

where

γ(C′) ≡ 1
√

1 − v(C′)2

c2

, γ(C′′) ≡ 1
√

1 − v(C′′)2

c2

It is immediately obvious, on inspection of the last member of (1.3), that the ratio of the
proper time intervals ∆t′, ∆t′′, registered by the clocks C’ and C”, depends not on the
relative velocity |~v(C′′)−~v(C′)| of the clocks but on the separate and independent values
of v(C′) and v(C′′). These velocities of the clocks, are specified in the frame S, the ‘base
frame’ in which the initial conditions of the problem are defined [5, 6].

Before the HKE was performed it was asserted by Schlegel [15] that the asymmetric
time dilation effect of Eq.(1.3) was in contradiction with special relativity and that time
dilation can depend only on the relative velocity of the two clocks which are observed. In
reply, Hafele defended [16] the use of coordinate time in the ECI frame in the calculations.
The results of the HKE [2] showed clearly that Hafele was right and Schlegel was wrong.
A subsequent paper by Schlegel [17] attempted a reanalysis of the HKE by introducing
considerations of the Sagnac effect for photons —a physically distinct experiment (see
Section 2 below)— and clock synchronisation procedures. Since the theoretical predictions
for the HKE are of time intervals recorded by separate cocks, the question of their relative
synchronisation, cannot, even in principle, have any effect on the predictions.
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More recently it was shown [18] that, if a different frame than the ECI (for example
the barycentric frame of the Solar System) is used to specify ‘coordinate time’, predictions
at variance with those of Hafele are obtained. The results of the HKE and the correct
operation of the GPS where the ECI frame is also used to calculate relativistic effects [7]
seems then to indicate that the ECI is a privileged frame for the specification of coordinate
time. This is a problem which merits further consideration, but lies beyond the scope of
the present paper which employs only Hafele’s theory that is verified both by the HKE
and the correct functioning of the GPS.

In the present paper, SR effects in a simplified version of the HKE will be considered
in which the aircraft moves with constant speed along Great Circles, the normal to which
makes a variable angle ψ with the axis of rotation of the Earth. GR effects are neglected.
Since, however, the important quantities in the analyses considered are double differences
such as3:

∆T ′′(+−) ≡ ∆T ′(W − E) − ∆T ′(E − W). (1.4)

GR contributions will cancel provided the average altitude of the aircraft is constant
during its flights. There remains a GR correction to the value of ∆T ′′(+−) which is
tiny in comparison with the experimental uncertainties of the time interval measurements
performed in the HKE. This correction is evaluated in the full GR analysis of Appendix
B, and is given in Section 2 below. It applies also to the experiments described in Sections
3 and 5, but not to the free-space experiment of Section 4 where the SR formula (2.7)
below gives an exact (to all orders in β) prediction.

In the HKE the frames S’ and S” are not inertial frames —they are subjected to
uniform transverse accelerations. It was demonstrated, by observation of time-dilated

decay lifetimes of ultra-relativistic muons with γ = 29 (γ ≡ 1/
√

1 − (~v/c)2) in near-

circular orbits in a storage ring at CERN [19] that the TD effect is the same as for muons
in an inertial frame with velocity equal to the magnitude, |~v|, of their average velocity
~v, in the presence of a transverse acceleration of 1019g. It is therefore assumed, in the
following, that S’ and S” may be considered to be inertial frames for calculations of the
TD effect. A similar assumption is made in the calculation of SR corrections due to TD
effects for the satellite-borne clocks of the GPS system [7].

The plan of this paper is as follows: In the following section it is shown how ob-

servations of ∆T ′′(+−) for Great Circle flights, as a function of ψ, enable the angular

momentum vector, ~Ω, of the Earth to be determined from purely internal measurements

of differences of time intervals recorded by airborne and Earthbound clocks. In Section 3 a

method is described to determine the speed and direction of motion of an arbitrary point

on the Earth’s surface by local measurements, using a variable which is a generalistation of

∆T ′′(+−), also by measuring time intervals recorded by airborne clocks and Earthbound

clocks. Section 4 contains a straightforward generalisation to three spatial dimensions of

3Note that, since T ′ cancels on the right side of (1.4), in the simplified version of the HKE considered
here where T ′(W − E) = T ′(E − W), it is actually equal to T ′′(W − E) − T ′′(E − W). If the W-E and
E-W flights start and end simultaneously, ∆T ′′(+−) is given directly by the difference, before and after
the flights, of the difference of the readings of the airborne clocks. No comparison with an Earth-bound
clock is then required.
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the analysis of the previous section, in order to measure internally the relative vectorial

velocity of of two inertial frames in free space. Section 5 shows how both the velocity

of a ship relative to the surface of the Earth (as considered by Galileo) as well as the

local velocity of the surface of the Earth may, in principle, be derived by comparing time

intervals recorded by clocks at rest on, and moving relative to, the ship —again, therefore

by purely internal measurements. It is important to note that the velocities that are

‘internally measured’ in all of the above experiments are, in no sense, ‘absolute’ ones but

relative velocities between reference frames in well-defined space-time experiments. The

final section contains a summary and conclusions.

2 Internal measurement of the angular velocity ~Ω of

the Earth using an aircraft and two clocks

In the following discussion, only SR effects are considered, and the Earth is assumed
to be exactly spherical and of radius R. For the case of equatorial circumnavigation, the
initial conditions of the experiment are completely specified by two parameters, vE ≡
v(C′) ≡ ΩR, which is the speed of the clock, C′ (with proper frame S’), at rest on the
surface of the Earth, in a non-rotating inertial frame, S, comoving with the centre of the
Earth, and v′A ≡ v′(C′′), which is the speed of the airborne clock, C′′, (with proper frame
S”) in the frame S’. For the analysis of the experiment it is necessary to introduce the
coordinate time recorded by a hypothetical clock C at rest in S. In the nomenclature for
space-time experiments recently introduced by the present author [5, 6] the frame S is
termed the ‘base frame’ of the experiment while S’ and S” constitute different ‘travelling
frames’. The base frame is defined as the one in which the clock is at rest in a time
dilation (TD) experiment. If, in such an experiment, a moving clock is seen to run slow
(fast) then the corresponding observer is in the base (travelling) frame of the experiment.
In the experiments to be discussed below, the time 4, t, registered by the clock C, remains
hypothetical since no observations of events in the external inertial frame S are performed.
It is shown, however, that purely internal observations of the times t′ and t′′ recorded by
C′ and C′′ respectively are sufficient to establish the travelling nature of the latter frames
and to determine the base frame velocity vE and hence Ω. It will be seen that, in the
lowest order approximation, knowledge of v′A is needed only to determine the value of R.

The experiments to be considered in this section are generalisations of the HKE in
which the aircraft moves with constant speed along an arbitrary Great Circle and the
Earthbound clock C’ is situated at an arbitrary (and initially unknown) position on the
Earth’s surface. A solution is sought to the following problem, supposing that the surface
of the Earth may be considered to be perfectly spherical:

Determine the size, axis of rotation, and speed of rotation of the Earth

from purely internal observations of two clocks, one at rest on the surface

of the Earth and the other in an aircraft that moves at constant speed v′A
4The word ‘time’, used without qualification, means a number, registered by a clock at some instant,

also commonly called the ‘epoch’ of the clock.
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relative to the surface of the Earth, along a Great Circle.

It is also assumed that the clock C′ may be moved in an arbitrary manner (transported,
for example, by the aircraft) over the surface of the Earth. Circumstances under which
the solution of the problem would be of practical importance would be, for example, if
the whole Earth were blanketed in an opaque cloud following an asteroid collision, or a
massive volcanic eruption, so that the Sun and fixed stars were no longer visible from the
Earth, and it was required to find the the axis of rotation of the Earth, i.e. the positions
of the North and South Poles.

The geometry, in the case that the angle between the Earth’s axis of rotation (z′-axis)
and the normal to the plane of the Great Circle followed by the aircraft (z-axis) is ψ, is
shown in perspective view in Fig. 1. The common x,x′ axis is perpendicular to the plane
spanned by the z and z′ axes, while the y and y′ axes complete right-handed Cartesian
coordinate systems. Projections into the x, y and y, z planes are shown in Fig. 2a and
2b respectively. The position of the aircraft, along the Great Circle, is specified by the
azimuthal angle φ. The angle, θ, between the direction of flight of the aircraft and the
tangent vector, in the W−E direction, to a circle of fixed latitude, is given by the relation,
derived in Appendix A

cos θ =
cosψ

[1 − sin2 ψ sin2 φ]
1

2

(2.1)

while the geometry of Fig. 2b gives the latitude angle, λ0, at P, in terms of ψ and φ0 as

sinλ0 = sinψ sinφ0. (2.2)

The differential TD relations for the clocks C′ and C′′ at an arbitrary point on the great
circle with latitude angle λ are (c.f. Eq. (1.3)):

dt = γ(C′, λ)dt′ = γ(C′′, λ, θ)dt′′ (2.3)

where

γ(C′, λ) ≡ 1
√

1 − β(C′, λ)2
, β(C′, λ) ≡ vE(λ)

c
≡ ΩR cosλ

c
, vE ≡ vE(λ = 0) (2.4)

and c is the speed of light in free space. Since the TD factor, γ, transforms as the temporal
component of the dimensionless velocity four-vector: (γ, γ~β), it follows that:

γ(C′′, λ, θ) = γ(C′, λ)[γ′(C′′) + β(C′, λ)β ′(C′′)γ′(C′′) cos θ] (2.5)

where

γ′(C′′) ≡ 1
√

1 − β ′(C′′)2
, β ′(C′′) ≡ v′A

c
. (2.6)

Combining (2.3) and (2.5) gives:

dt′′ =
γ(C′, λ)

γ(C′′, λ, θ)
dt′ =

dt′

γ′(C′′)[1 + β(C′, λ)β ′(C′′) cos θ]
. (2.7)

Retaining only O(β2) terms on the right side of (2.7) and making use of (2.1) and the
generalisation of (2.2), for an arbitrary point on the Great Circle, gives:

dt′′ =

[

1 − β ′(C′′)2

2
∓ β(C′)β ′(C′′) cosψ

]

dt′ (2.8)
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Figure 1: Perspective view of the Great Circle path followed by the aircraft with velocity ~v′A
relative to the fixed point P on the surface of the Earth. The normal to the Great Circle
(the z−axis) is inclined at an angle ψ relative to the polar z′−axis. The unit vector t̂ is
the tangent, in the W−E direction, at P, to the circle of fixed latitude λ0. The x, x′−axis
is normal to the plane spanned by the z− and z′−axes and its projection into the circle of
fixed latitude is QN. The angle between ~v′A and t̂ is θ0, and φ0, φ

′

0 are azimuthal coordinates
of P along the Great Circle and the circle of fixed latitude, respectively. The x, x′ and y′

axes lie in the Earth’s equatorial plane, the x, x′ and y axes in the plane of the Great
Circle.
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Figure 2: a) x, y and b) y, z projections of the configuration of Fig.1. R is the radius of
the Great Circle in a) and of the Earth in b).
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where β(C′) ≡ β(C′, λ = 0) and the − (+) signs correspond to cosθ > (<)0. In (2.8) the
relation (see Appendix A) β(C′, λ) cos θ = β(C′) cosψ has been used. Since the aircraft
moves with uniform speed around the Great Circle, dt′ = (R/v′A)dφ. Also (2.1) and (2.2)
may be used to derive the following relation (see Appendix A) between ψ and the values,
θ0 and λ0, of θ and λ, at the point P:

cosψ = cos θ0 cosλ0. (2.9)

The formula (2.8) which is the basis for all the calculations presented in the present and
subsequent sections of the present paper was first derived for the special case: cos θ > 0
and ψ = 0 by Hafele [3, 4]. Since it gives the ratio of infinitesimal proper time intervals,
it does not depend on the shape of the world lines followed, in the frame S, by the clocks
C’ and C”. In particular it is equally valid for the circular world lines considered in the
present section and the straight ones considered in Sections 3, 4 and 5 below, where the
proper frames of C’ and C” are inertial ones. Hafele’s GR calculation, yielding (2.8), in
the limit of a vanishing or constant gravitational field, is recalled in Appendix B below. It
was also derived as a pure SR calculation from the Minkowski metric (as in the derivation
of Eq. (1.3) in the Introduction of the present paper or by Hafele (Appendix of [4]).

Labelling the Great Circle followed by the aircraft as ‘+’ if cos θ0 > 0 (i.e. one with
W–E motion) and ‘−’ if cos θ0 < 0 (i.e. one with E–W motion) the round trip time T ′′

as recorded by C′′ is given by (2.8) as:

T ′′(θ0, λ0,±) =
R

v′A

∫ 2π+φ0

φ0

[

1 − β ′(C′′)2

2
∓ β(C′)β ′(C′′) cosψ

]

dφ

=
2πR

v′A

[

1 − β ′(C′′)2

2
∓ β(C′)β ′(C′′) cosψ

]

(2.10)

and ψ is given, in terms of θ0 and λ0, by (2.9) with 0 < θ0 < π/2. Note that the value of
the φ integral in (2.10) is independent of φ0. The duration, T ′, of a Great Circle flight,
as recorded by C′, is independent of the value of ψ:

T ′ =
2πR

v′A
. (2.11)

The difference of the time intervals recorded by C′′ and C′, ∆T ′ is then, from (2.10)
and (2.11):

∆T ′(θ0, λ0,±) ≡ T ′′(θ0, λ0,±) − T ′ = T ′

[

−β
′(C′′)2

2
∓ β(C′)β ′(C′′) cosψ

]

. (2.12)

It follows from (2.12) that:

∆T ′′(θ0, λ0,+−) ≡ ∆T ′(θ0, λ0,+) − ∆T ′(θ0, λ0,−)

= −2T ′β(C′)β ′(C′′) cosψ = −4πRvE cos θ0 cosλ0

c2
. (2.13)

Notice that, in this approximation where terms of O(β4) and higher are neglected, the
value of ∆T ′′(θ0, λ0,+−) depends only on c, the radius of the Earth and the values of ψ
and vE, being independent of the speed of the aircraft, v′A in the frame S’.
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Figure 3: ∆T ′′(+−) ≡ ∆T ′(W − E) − ∆T ′(E − W) (in ns) as a function of θ0 for fixed
values of the latitude angle λ0 of the point P in Fig. 1 at which the Great Circle flight
starts. Note that the curves are independent of the value of v′A. R = 6.38 × 106m and
vE = 464m/s.
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Curves of ∆T ′′(θ0, λ0,+−) as a function of θ0 for various values of λ0 are shown in
Fig. 3 where, in (2.13), R = 6.38 × 106m and vE = 464m/s. As just mentioned, the
curves in Fig. 3 are independent of the value of v′A. The radius of the Earth is determined
from (2.11) by the observed value of T ′, from the known value of v′A. The direction of
the line of fixed longitude at P is determined by the orientation of the Great Circle for
which ∆T ′′(θ0, λ0,+−) vanishes (θ0 = 90◦ in Fig. 3). The line of fixed latitude at P
is perpendicular to this direction. The direction of rotation of the Earth is determined
by the sign of ∆T ′′(θ0 = 0, λ0,+−). If it is positive (negative) the aircraft moves in

the E–W (W–E) direction. To now determine the value of vE(λ = 0), and hence |~Ω| =
vE(λ = 0)/R, the clock C′ is transported along the line of longitude in the direction of
increasing |∆T ′′(θ0 = 0, λ0,+−)| until the maximum value of this quantity is obtained.
The corresponding Great Circle is the Equator (θ0 = λ0 = ψ = 0). It then follows from
(2.13) that:

|~Ω| =
vE

R
= c2

|∆T ′′(θ0 = 0, λ0 = 0,+−)|
4πR2

. (2.14)

The radius of the Earth and the position of the Equator, as well as the positions of the
North and South Poles (i.e the direction of the axis of rotation of the Earth), are now
known. Since the direction of rotation along lines of constant latitude, as well as the value
of |~Ω|, are also known, ~Ω is determined and the problem posed above is solved.

Inclusion of GR effects results in a correction factor 1 + 2φE/c
2 on the right side of

(2.14) (see Eq. (B.11)) where φE = −GME/R = −6.25×1011(m/s)2, so that the correction
factor has the value 1 − 1.38 × 10−5, to be compared with a relative experimental error
of about 15% on the measurement of ∆T ′′(+−) in the HKE experiment.

It has become customary in the literature [20, 21] to call the formula (2.14) which
embodies the asymmetric time dilation effect observed in the HKE experiment, a ‘Sagnac
Effect’ due to the accidental mathematical identity, at lowest order in β, of the equation
with that giving the difference of shifts of arrival times of light signals, travelling around
the Earth along its Equator, in the W−E or E−W directions, due to the Earth’s easterly
rotation. This is a purely classical O(β) effect, a consequence of differing relative velocities
of the light signal (which moves with speed c in the ECI frame) and the receiver on the
surface of the Earth. In contrast Eq. (2.14) arises from the purely relativistic (O(≥
β2)) TD effect. The incorrect conflation of the classical Sagnac effect [22, 23] with the
relativistic TD effect for moving clocks has also recently been pointed out by Gezari [24].

It is interesting to note that recent experiments [25, 26] have shown that the Sagnac
effect can be used, not only to detect rotation, as in ring laser and fibre optic gyroscopes,
but also uniform translational motion of a light-carrying fibre optic cable.

3 Internal measurement of the speed of motion of

an arbitrary point on the Earth’s surface using a

moveable clock

Over limited regions of the Earth’s surface, the latitude-dependent velocity vE(λ)
may be considered constant. For example, for displacements of ±100km along a line of
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longitude, near λ = 45◦ the value of vE(λ) changes by only ±1.6%. The average value
of vE(λ) in such a restricted region can be measured locally by taking advantage of the
same frame-dependent time dilation effects as manifested in the HKE.

Figure 4: Arrangement of clocks for a local measurement of the velocity, in the frame S,
of a point on the Earth’s surface. C′(O), C′(x) and C′(y) are synchronised clocks, at fixed
locations, between which the clock C′′ is moved at constant speed. In a) where C′′ moves
along the positive x-axis it is seen by observers at rest on the Earth’s surface to run slow
relative to the clocks C′. In b) where C′′ moves in the negative x−direction, at the same
speed, it is seen to run fast.

An experimental setup for such a measurement is shown schematically in Figs. 4 and
5. The principle of the measurement is illustrated in Fig. 4. Clocks C’(O), C’(x) and
C’(y) are placed, respectively, at the origin and at equal distances, D, along the x− and
y−axes of an arbitrarily-oriented Cartesian coordinate system on the surface of the Earth.
The above three clocks are synchronised, and a fourth clock, C′′, moves along the x− or
y−axes at constant speed v′. Some different methods of synchronising spatially-separated
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Figure 5: a) Measurement of ∆T ′′(x,+−) by moving C′′ along the x-axis. a) Measurement
of ∆T ′′(y,+−) by moving C′′ along the y-axis. Synchronised clocks as shown in Fig. 4.
are located at the marker positions: O, X, Y. See text for discussion.

12



clocks, without the use of light signals, are described in [27]. A convenient method for
the experiment described here, as well as that of Section 5, is to use a signal cable5 with
a known delay time tD. The distant to-be-synchronised clock is stopped and set to show
the time tD. The local clock is started, with initial setting zero, at the instant that the
synchronisation signal is sent along the cable. The distant clock, started on reception of
the signal, is then synchronised with the local clock. It is important to remark that the
‘slow clock transport method’ [28] cannot be used to synchronise separated clocks on the
surface of the Earth unless they lie on the same line of longitude (θ = 90◦ in Eq. (2.7)).
The time intervals recorded by C′′ as it moves from the position of clock C’(O) to that of
C’(x), T ′′(x,+), or vice versa, T ′′(x,−), are compared with those recorded by C’(O) and
C’(x). Similar comparisons are made for the intervals T ′′(y,+) and T ′′(y,−) which are
similarly defined for motion along the y−axis. As shown in Appendix A, the geometry of
Fig. 4 and (2.7) gives, on retaining only O(β2) terms on the right side of (2.7):

∆T ′(x,+) ≡ T ′′(x,+) − T ′ =
D

v′



−1

2

(

v′

c

)2

− v′vE(λ)

c2
cos θ



 , (3.1)

∆T ′(x,−) ≡ T ′′(x,−) − T ′ =
D

v′



−1

2

(

v′

c

)2

+
v′vE(λ)

c2
cos θ



 , (3.2)

∆T ′(y,+) ≡ T ′′(y,+) − T ′ =
D

v′



−1

2

(

v′

c

)2

+
v′vE(λ)

c2
sin θ



 , (3.3)

∆T ′(y,−) ≡ T ′′(y,−) − T ′ =
D

v′



−1

2

(

v′

c

)2

− v′vE(λ)

c2
sin θ



 . (3.4)

where T ′ = D/v′ is the time interval recorded by C’(O), C’(x) and C’(y) during the
passages of C′′. Eq. (3.1) shows that T ′′(x,+) − T ′ < 0 for cos θ > 0, so that, as shown
in Fig. 4a, for motion in the positive x−direction, C′′ is seen to run slow relative to
clocks at rest on the surface of the Earth. In the case that vE(λ) cos θ > v′/2, (3.2) gives
T ′′(x,−)−T ′ > 0 and, as shown in Fig. 4b, for motion in the negative x−direction, C′′ runs
fast relative to such clocks. Fig. 4 shows clearly that the observed TD effect in the frame
S’ does not depend only on the relative velocity of the stationary and moving clocks in the
experimemt, as might naively be expected if ‘everything is relative’. Indeed, in Fig. 4b
there is a ‘time contraction’, not a time dilation effect, as the moving clock actually runs
faster than the stationary ones. This demonstrates the fundamental importance of the
concepts of ‘base’ and ‘travelling’ frames [5, 6], or the equivalent one of ‘coordinate time’
[3, 4]) (as recorded by a hypothetical clock at rest in the frame in which the velocity of
a moving clock is specified) for the correct description of temporal effects in space-time
experiments.

It follows from (3.1)−(3.4) that:

∆T ′(x,+) − ∆T ′(x,−) ≡ ∆T ′′(x,+−) = −2DvE(λ)

c2
cos θ, (3.5)

∆T ′(y,+)− ∆T ′(y,−) ≡ ∆T ′′(y,+−) =
2DvE(λ)

c2
sin θ. (3.6)

5This should be a conventional cable with a metallic conductor in which the signal is carried by
conduction electrons. The light signal propagation time in a fiber-optic cable depends on the linear
motion of the cable due to the Sagnac effect [25, 26].
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Notice that although the time interval T ′ formally cancels in the definition of ∆T ′′, it is
crucial for the experiment that what can be observed with high precision —as done in the
HKE— is only the difference between the time intervals recorded by C” and C’. This is
given by comparing the readings of the two clocks, which, if they run at the same constant
rate, can, in principle, be done at any time after C” is brought to rest in the frame S’.
It is clearly practically impossible to measure the tiny difference between, say, T ′′(x,+)
and T ′′(x,−) by attempting to measure these intervals simply by observing the epochs
recorded by C” at the beginning and end of the transit. However, if this could be done,
the clock C’ would actually not be needed to determine ∆T ′′(+−), and the experiment
could be performed using the clock C” alone, thus avoiding completely the necessity of
clock synchronisation..

The measurements of ∆T ′′(x,+−) and ∆T ′′(y,+−) now give the magnitude of the
local velocity of the surface of the Earth, as well as the direction of the local line of fixed
latitude:

vE(λ) =
c2

2D
[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2]

1

2 , (3.7)

cos θ =
−∆T ′′(x,+−)

[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2]
1

2

, (3.8)

sin θ =
∆T ′′(y,+−)

[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2]
1

2

. (3.9)

A scheme for an actual experiment is shown in Fig. 5. In some flat deserted region

of the Earth, markers O, X and Y, each equipped with a synchronised clock, are set

up at the origin and at equal distances, D, along the axes of a Cartesian coordinate

system. The precision clock C′′ is placed in a helicopter and flown, at constant speed,

from O to X then from X to O (Fig. 5a) and from O to Y then from Y to O (Fig. 5b).

During the passages the four time interval differences T ′′(x,±)−T ′ and T ′′(y,±)−T ′ are

measured. Performing the experiment at the Equator where vE(λ = 0) = 464m/s, and

setting D = 100km, gives ∆T ′′(x,+−) = 1.04ns for θ = 0. If the speed of the helicopter

is 300km/h the time intervals T ′′ must therefore be measured with a relative precision

considerably better than ' 10−11 over the flight time T ′ = 20m. This is well within

the capability of modern atomic clocks which can measure time intervals with relative

precision of 10−15/day [29].

4 Internal measurement using moveable clocks of the

velocity ~v of an arbitrary travelling frame in free

space

The comoving frames S’ and S” of the clocks C′ and C′′ during the measurements
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described in the last section are not inertial frames, as they are subject to transverse
acceleration. However as previously discussed and experimentally verified, the TD effects
are the same as they would be in strictly inertial frames moving with the same total
velocity relative to the frame S, in which coordinate time is defined. It is then evident
that if the markers O, X and Y shown in Fig. 5 were situated in free space and all moved
with the same uniform velocity in the x–y plane in S, the predictions of Eqs. (3.7)-(3.9)
would be unchanged. Thus the velocity of an inertial travelling frame S’, relative to its base
frame S, can, in general, be determined by purely internal measurements: observations of
∆T ′′, in S’.

Figure 6: Clock displacements to measure the time intervals ∆T ′′(χ,+−) (χ = x, y, z)
from which the velocity of the travelling inertial frame S’ relative to inertial base frame
S, ~v, may be determined. Synchronised clocks (not shown) are located at the marker
positions: O, X, Y and Z. See text for discussion.

The measurement of the magnitude and direction, in a plane, of the velocity of S’
relative to S given by Eqs. (3.7)-(3.9) is readily generalised to motion in three spatial
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dimensions. How this might be done is shown schematically in Fig. 6. The marker
objects O,X,Y and Z are situated, respectively, at the origin and at equal distances, D,
along arbitrarily oriented x−, y− and z−axes of a Cartesian coordinate system in free
space. Each marker object is equipped with a synchronised clock: C′(O), C′′(X), C′(Y)
and C′(Z). The clocks may conveniently be synchronised by the method described in the
previous section, with light signals in free space replacing the cable-borne ones. The clocks
at X, Y and Z are stopped and set to t′ = D/c. At time t′ = 0 the clock at O is started
and light signals are sent towards the other clocks. The latter start on receiving the
light signals. All four clocks are then synchronised. When the clocks are simultaneously
accelererated, in the base frame, up to the velocity ~v they remain synchronised when
observed in this frame [30]. The base frame S is the one in which the velocity ~v of the
travelling frame S’ is specified (an initial condition of the experiment). Coordinate time
is recorded by clocks at rest in S. Since all time intervals in the frames S’ and S” are
calculated in terms of coordinate time intervals, ∆t, using the time dilation relations
(1.3) there is no possiblity that any ‘relativity of simultaneity’ effects defined as frame-
dependent differences of clock settings of separate clocks, not differences of time intervals
recorded by such clocks, can play any role in the calculations. Notice that, as mentioned
in the previous section, the clocks at O, X, Y and Z are only placed, for experimental
convenience, to provide direct measurements of ∆T ′(+) and ∆T ′(−). If the time intervals
T ′′(+) and T ′′(−) are directly observed only the single (moving) clock C” would suffice
to perform the whole experiment and no synchronisation of clocks at rest in the frame S’
is required.

The magnitude and direction of the relative velocity, ~v, of S’ and S is then internally
determined, during the phase of uniform motion, by moving the clocks C′′(x), C′′(y) and
C′′(z), between the marker objects, at constant speed along the coordinate axes as shown
in Fig. 6, and observing the time interval difference ∆T ′′ between this clock and the
synchronised fixed clocks at the marker positions. Of course, the same, physical, moving
clock can be used to perform all the measurements. The geometry of Fig. 6 gives, as the
three-dimensional generalisation of Eqs. (3.5) and (3.6):

∆T ′′(z,+−) = −2Dv

c2
cos θ, (4.1)

∆T ′′(y,+−) = −2Dv

c2
sin θ sinφ. (4.2)

∆T ′′(x,+−) = −2Dv

c2
sin θ cosφ. (4.3)

so that (3.7)-(3.9) generalise to

v =
c2

2D
[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2 + ∆T ′′(z,+−)2]

1

2 , (4.4)

cos θ = − ∆T ′′(z,+−)

[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2 + ∆T ′′(z,+−)2]
1

2

, (4.5)

sinφ = − ∆T ′′(y,+−)

[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2]
1

2

, (4.6)

cosφ = − ∆T ′′(x,+−)

[∆T ′′(x,+−)2 + ∆T ′′(y,+−)2]
1

2

. (4.7)
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For velocities v ' vE = 464m/s and distances D of the order of the circumference of the
Earth ' 4 × 104km, the values of ∆T ′′ will be similar than those shown in Fig. 3 —up
to several hundred nanoseconds— and so easily measurable by currently available atomic
clocks.

5 Internal measurement using a moveable clock of

the speed of Galileo’s ship

A common way of stating the Special Relativity Principle (SRP) is to assert the impos-
sibility, by any physical means whatever, to detect the existence of uniform translational
motion by purely internal measurements, This was done in a particularly graphic way by
Galileo in his book ‘Dialogue Concerning the Two Chief World Systems —Ptolemaic and
Copernican’ [31] in the following (abridged) passage:

‘Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you there some flies, butterflies, and other small
flying animals. Have a large bowl of water with some fish in it; hang up a
bottle that empties drop by drop into a wide vessel beneath it. With the ship
standing still, observe carefully how the little animals fly with equal speeds to
all sides of the cabin. The fish swim indifferently in all directions; the drops
fall into the vessel beneath; . . . When you have observed all these things
carefully . . . have the ship proceed with any speed you like, so long as the
speed is uniform and not fluctuating this way and that. You will discover not
the least change in all the effects named, nor could you tell from any of them
whether the ship was moving or standing still. . . . The droplets will fall as
before into the vessel beneath without dropping toward the stern, although
while the drops are in the air the ship runs many spans. The fish in the water
will swim toward the front of their bowl with no more effort than toward the
back and will go with equal ease to bait placed anywhere around the edges of
the bowl. Finally butterflies and flies will continue their flights indifferently
toward every side, nor will it happen that they are concentrated toward the
stern, as if tired from keeping up with the course of the ship, from which they
will have been separated during long intervals by keeping themselves in the
air’.

The assertion of this passage that the laws of physics are the same in different in-
ertial frames is a valid one for mechanical processes —indeed it follows as a necessary
consequence of the invariance of Newton’s Second Law of Motion under the Galilean
transformations: x′ = x− vt, t′ = t. However, as will now be demonstrated, it is sufficent
to have synchronised precision clocks at different positions in the ship, together with an-
other one that can be moved about the ship at constant speed, to measure, internally, the
speed of the ship relative to the surface of the Earth, as well as the local speed of motion
of the surface of the Earth in the inertial frame S. As in the previous examples, if time
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intervals registered by the moving clock during its displacements were directly observable,
this clock alone would suffice to perform the experiment.

A precision clock, C′′′, with proper frame S′′′, recording time t′′′, moveable at constant
speed v′′ in the proper frame S” of the ship, that may be compared with synchronised
clocks C′′(i), recording time t′′, at different positions, i, in the ship, is introduced. It is
assumed that the ship always moves parallel to a line joining the stern of the ship to
its bow, and that C′′′ is displaced along this same line, where it is compared with clocks
C′′(1) and C′′(2) which are a distance D apart, say at the stern and bow, respectively,
of the ship. The calculation of the speed v′ of the ship (which is assumed to move at an
angle θ relative to the local line of fixed latitude) in the local comoving rest frame S’ of
the Earth’s surface, is a straightfoward generalisation of the one presented in Section 3
above. The TD effect for the clocks C′′ and C′′′ is given (see Eq. (1.3)) by the equations:

dt = γ(C′′)dt′′ = γ(C′′′)dt′′′. (5.1)

Analogously to Eq. (2.5):

γ(C′′′,±) = γ(C′)[γ′(C′′′,±) + β(C′)β ′(C′′′,±)γ′(C′′′,±) cos θ] (5.2)

where
γ′(C′′′,±) = γ′(C′′)[γ′′(C′′′) ± β ′(C′′)β ′′(C′′′)γ′′(C′′′)] (5.3)

and
β ′(C′′′,±)γ′(C′′′,±) = γ′(C′′)[±β ′′(C′′′)γ′′(C′′′) + β ′(C′′)γ′′(C′′′)] (5.4)

with the + (−) signs corresponding to motion of C′′′ from stern to bow (bow to stern).
Using (5.3) and (5.4) to eliminate γ′(C′′′,±) and β ′(C′′′,±)γ′(C′′′,±) from (5.2) gives:

γ(C′′′,±) = γ(C′)γ′(C′′)γ′′(C′′′){1±β ′(C′′)β ′′(C′′′)+β(C′)[β ′(C′′)±β ′′(C′′′)] cos θ} (5.5)

Combining this equation with (2.5) and (5.1):

dt′′′(±) =
γ(C′′)dt′′

γ(C′′′,±)
=

(1 + β(C′)β ′(C′′) cos θ)dt′′

γ′′(C′′′){1 ± β ′(C′′)β ′′(C′′′) + β(C′)[β ′(C′′) ± β ′′(C′′′)] cos θ} (5.6)

If T ′′′(θ,+) and T ′′′(θ,−) are the time intervals recorded by C′′′ for passages from stern
to bow and from bow to stern respectively, then since the corresponding time interval
T ′′ recorded by C′′(1) or C′′(2) is D/v′′, (5.6) gives, on retaining only O(β2) terms, the
equations analogous to (3.1)−(3.4):

∆T ′′(θ,+) ≡ T ′′′(θ,+) − T ′′ =
D

v′′



−1

2

(

v′′

c

)2

− v′′(v′ + v cos θ)

c2



 , (5.7)

∆T ′′(θ,−) ≡ T ′′′(θ,−) − T ′′ =
D

v′′



−1

2

(

v′′

c

)2

+
v′′(v′ + v cos θ)

c2



 (5.8)

from which follows, analogously to (3.5) or (3.6):

∆T ′′′(θ,+−) ≡ ∆T ′′(θ,+) − ∆T ′′(θ,−) = −2D

c2
(v′ + v cos θ) (5.9)
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If v′ = 0 then (3.5) is recovered from (5.9) and ∆T ′′′ measures v cos θ so that if θ is known
v may be determined. Note that ∆T ′′′ is independent of v′′, the speed of the moving clock
C′′′. In order to measure v′ directly from (5.9) it is necessary that θ = 90◦ so that it is
known that the ship moves directly N−S, or S−N, i.e. along a line of fixed longitude.

A procedure to measure all three unknown quantities v′, v and θ in (5.9) is to perform
three separate measurements of ∆T ′′′ first according to (5.9) and then on changing the
direction of motion of the ship by by two successive anti-clockwise rotations of 120◦ each.
This gives the following three relations:

∆T ′′′(1) ≡ ∆T ′′′(θ,+−) = −2D

c2
(v′ + v cos θ), (5.10)

∆T ′′′(2) ≡ ∆T ′′′(θ + 120◦,+−) = −2D

c2
(v′ − vS cos θ − vC sin θ), (5.11)

∆T ′′′(3) ≡ ∆T ′′′(θ + 240◦,+−) = −2D

c2
(v′ − vS cos θ + vC sin θ) (5.12)

where
S ≡ sin 30◦ = 1/2, C ≡ cos 30◦ =

√
3/2.

These simultaneous equations may be solved to give v′, v and θ. It is found that:

v′ = −c
2[2S∆T ′′′(1) + ∆T ′′′(2) + ∆T ′′′(3)]

4D(1 + S)
, (5.13)

v =
√

v2
S + v2

C , (5.14)

vS ≡ v sin θ = −c
2[∆T ′′′(3) − ∆T ′′′(2)]

4DC
, (5.15)

vC ≡ v cos θ = −c
2[2∆T ′′′(1) − ∆T ′′′(2) − ∆T ′′′(3)]

4D(1 + S)
. (5.16)

If the direction of motion of the ship relative to the local line of fixed latitude is known,
two measurements of ∆T ′′′ suffice to determine both v′ and v, provided the ship does not
move along a line of fixed longitude. For example, for West to East and East to West
motion, corresponding to a change of 180◦ in the direction of motion of the ship, (5.9)
gives:

∆T ′′′(W − E,+−) = −2D

c2
(v′ + v), (5.17)

∆T ′′′(E − W,+−) = −2D

c2
(v′ − v). (5.18)

So that

v′ = −c
2[∆T ′′′(W − E,+−) + ∆T ′′′(E − W,+−)]

4D
, (5.19)

v = −c
2[∆T ′′′(W − E,+−) − ∆T ′′′(E − W,+−)]

4D
. (5.20)

Assuming D = 200m and equatorial motion so that v = 464m/s, it is found that, since
v′ � v, that

−∆T ′′′(W − E,+−) ' ∆T ′′′(E − W,+−) ' 2ps
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If the clock C′′′ is moved at walking pace (5 km/h) from the stern of the ship to the
bow and vice versa the time recorded by C′′(1) and C′′(2) during a single clock transport
is 144s. The corresponding time uncertainty for time measurement by a clock with the
current stability of 100ps/day is 0.17ps, which gives an 8.5% fractional error in the mea-
surement of ∆T ′′′ or of v. If v′ = 60km/h (16.7m/s) then v′/v = 0.035. Therefore a one
order of magnitude improvement in clock stability would be required to detect v′ at the
four standard deviation level, and two orders of magnitude improvement to measure v′

with a relative precision of 0.2%. Such an experiment, which seems within the bounds of
experimental possibility, would then falsify, in a convincing manner, the application in the
real world of the SRP as a statement of the impossibility, by any physical means what-
ever, to detect by purely internal measurements, the existence of uniform translational
motion. Because, however, Newton’s Second Law of motion, in the form d~p/dt = ~F with

suitably defined relativistic definitions of momentum, ~p, and force, ~F , holds in all inertial
frames, the SRP retains its validity in special relativity for all mechanical experiments,
and it remains true that the results of such experiments are unable to detect, internally,
the presence of uniform translational motion. Galileo’s assertion concerning mechanical
experiments therefore remains valid in special relativity. A ‘mechanical experiment’ is
defined in the present paper as one in which Newton’s Second Law, or some theoretically
equivalent concept, such as Hamilton’s Principle, is essential for its analysis. No such
laws are invoked in the purely space-time geometric derivation of the asymmetric time
dilation relations (1.3).

Appendix A

The unit vector t̂, tangent to the circle of fixed latitude, in the W−E direction, at any
point on the Great Circle followed by the aircraft (see Figs. 1 and 2), can be written in
primed coordinates as:

t̂x′ = − sin φ′, (A.1)

t̂y′ = cos φ′, (A.2)

t̂z′ = 0 (A.3)

where φ′ is the azimuthal angle measured from the line segment QN, (see Fig. 1) in the
plane of a circle of fixed latitude λ.

Transforming t̂ into the unprimed system according to:

x = x′, (A.4)

y = y′ cosψ + z′ sinψ, (A.5)

z = z′ cosψ − y′ sinψ (A.6)

gives

t̂x = − sin φ′, (A.7)

t̂y = cosφ′ cosψ, (A.8)

t̂z = − cosφ′ sinψ. (A.9)

Since the projection of t̂ into the xy plane (the plane of the Great Circle around which
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the aircraft moves) is tangent to the Great Circle at P (see Fig. 2a):

t̂x

t̂y
= − tanφ = −tanφ′

cosψ
(A.10)

so that
tanφ′ = cosψ tanφ. (A.11)

Using (A.11) to eliminate φ′ from (A.7)-(A.9) gives:

t̂x = − cosψ tanφ

(1 + cos2 ψ tan2 φ)
1

2

, (A.12)

t̂y =
cosψ

(1 + cos2 ψ tan2 φ)
1

2

, (A.13)

t̂z = − sinψ

(1 + cos2 ψ tan2 φ)
1

2

. (A.14)

Since

(~v′A)x = −v′A sin φ, (A.15)

(~v′A)y = v′A cosφ, (A.16)

(~v′A)z = 0. (A.17)

it follows that

cos θ =
t̂ · ~v′A
|~v′A|

=
cosψ tanφ sinφ+ cosψ cosφ

(1 + cos2 ψ tan2 φ)
1

2

=
cosψ

(1 − sin2 ψ sin2 φ)
1

2

(A.18)

which is Eq. (2.1) of the main text. Eq. (2.2) generalises, for an arbitrary point on the
Great Circle, to:

sin λ = sinψ sinφ. (A.19)

Eliminating φ between (A.18) and (A.19) gives:

cosψ = cos θ cosλ (A.20)

which is the generalisation of Eq. (2.9) of the text for an arbitrary point on the Great
Circle.

It follows from (2.4) that:

β(C′, λ) cos θ = β(C′) cosλ cos θ =
β(C′)(1 − sin2 ψ sin2 φ)

1

2 cosψ

(1 − sin2 ψ sin2 φ)
1

2

= β(C′) cosψ (A.21)

where (A.18) and (A.19) are used to eliminate θ and λ respectively.

Setting v′A = v′, then (2.7) is written explicitly in terms of v′ and vE(λ) as:

dt′′ =
[
√

1 − (v′/c)2]dt′
[

1 + v′vE(λ)
c2

cos θ
] (A.22)
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Retaining only O(β2) terms on the right side of this equation gives:

dt′′ =



1 − 1

2

(

v′

c

)2

− v′vE(λ)

c2
cos θ



 dt′ (A.23)

The formula (3.1), for example, is derived from (A.23) on making the replacements dt′′ →
T ′′(x,+), dt′ → T ′ = D/v′ in (A.23). Other appropriate replacements yield Eqs.(3.2)-
(3.4).

Appendix B

Taking into account both SR and GR effects, for a clock in motion on the surface of
the Earth, assumed to be spherical, of radius R, and of mass, ME, an increment, dτ , of
the proper time of the clock is related to the corresponding increment, dt of coordinate
time, as discussed in Section 2, by the Schwartzschild metric equation [32, 33]

dτ =

[(

1 +
2φE

c2

)

− 1

c2

(

v2
r

1 + 2φE

c2

+ v2
θ + v2

φ

)]
1

2

dt (B.1)

where vr, vθ and vφ are components of the velocity of the clock in the ECI frame in
a polar coordinate system with origin at the center of the Earth, polar axis oriented
in the S−N direction and φE = −GME/R is the gravitational potential at the surface
of the Earth. For a clock undergoing equatorial circumnavigation, vr = vθ = 0 and
vφ = vE = cβE. Denoting, as in the text, the proper time of a clock by t′ or t′′, Eq. (B.1)
then simplifies, for clocks at rest on the surface of the Earth, undergoing W−E (+) or
E−W (−) equatorial round trips at speed v′A = cβ ′

A relative to the surface of the Earth,
to the respective equations:

dt′ =

[(

1 +
2φE

c2

)

− β2
E

]
1

2

dt, (B.2)

dt′′
±

=

[(

1 +
2φE

c2

)

− βA(±)2

]
1

2

dt (B.3)

where

βA(±) ≡ βE ± β ′

A

1 ± βEβ ′
A

. (B.4)

Taking the quotient of (B.3) and (B.2) gives

dt′′
±

=





(

1 + 2φE

c2

)

− βA(±)2

(

1 + 2φE

c2

)

− β2
E





1

2

dt′. (B.5)

Subsituting for βA(±) in (B.5) from (B.4) gives, after some algebraic manipulation,

dt′′
±

=

√

1 − (β ′

A)2

1 ± βEβ
′

A







1 − β2
E +

(1±βEβ′

A
)2

1−(β′

A
)2

2φE

c2

1 − β2
E + 2φE

c2







1

2

dt′. (B.6)
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Setting φE = 0, Eq. (2.7) for the case λ = 0, θ = 0 or π is recovered. Retaining only the
first order term in φE in the power expansion of the terms in the large square bracket of
(B.6) gives:

dt′′
±

=







√

1 − (β ′

A)2

1 ± βEβ
′

A

+
φE

(1 − β2
E)c2





1 ± βEβ
′

A
√

1 − (β ′

A)2
−
√

1 − (β ′

A)2

1 ± βEβ
′

A











dt′. (B.7)

while retaining only O(β2) terms on the right side of (B.7) gives:

dt′′
±

=

{

1 − (β ′

A)2

2
∓ βEβ

′

A +
φE

c2
[(1 + β2

E + β ′

A)2 ± 2βEβ
′

A]

}

dt′. (B.8)

Integrating over the W−E or E−W round trips to give: T ′′(+) ≡ ∫

dt′′+, T ′′(−) ≡ ∫

dt′′
−

and T ′ ≡ ∫

dt′ it is found that

∆T ′′(±) = T ′′(+) − T ′′(−) = −2T ′βEβ
′

A(1 − 2φE

c2
) + O(φ2

E) (B.9)

or, using (2.11)

∆T ′′(±) = −4πvER

c2
(1 − 2φE

c2
) + O(φ2

E) (B.10)

So, on including the O(φE) GR correction, Eq. (2.14) is modified to:

|~Ω| =
vE

R
= c2

|∆T ′′(θ0 = 0, λ0 = 0,+−)|
4πR2

(1 +
2φE

c2
). (B.11)
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